期刊论文详细信息
Journal of the Korean Chemical Society
The Moisture Absorption Properties of Liquid Type Epoxy Molding Compound for Chip Scale Package According to the Change of Fillers
Whan Gun Kim1 
关键词: Epoxy Molding Compound;    Diffusion;    Moisture Absorption Ratio;    Filler;   
DOI  :  
学科分类:化学(综合)
来源: Korean Chemical Society
PDF
【 摘 要 】

Since the requirement of the high density integration and thin package technique of semiconductor have been increasing, the main package type of semiconductor will be a chip scale package (CSP). The changes of diffusion coefficient and moisture content ratio of epoxy resin systems according to the change of liquid type epoxy resin and fillers for CSP applications were investigated. The epoxy resins used in this study are RE-304S, RE310S, and HP-4032D, and Kayahard MCD as hardener and 2-methylimidazole as catalyst were used in these epoxy resin systems. The micro-sized and nano-sized spherical type fused silica as filler were used in order to study the moisture absorption properties of these epoxy molding compound (EMC) according to the change of filler size. The temperature of glass transition (Tg) of these EMC was measured using Dynamic Scanning Calorimeter (DSC), and the moisture absorption properties of these EMC according to the change of time were observed at 85 oC and 85% relative humidity condition using a thermo-hygrostat. The diffusion coefficients in these EMC were calculated in terms of modified Crank equation based on Ficks' law. An increase of diffusion coefficient and maximum moisture absorption ratio with Tg in these systems without filler can be observed, which are attributed to the increase of free volume with Tg. In the EMC with filler, the changes of Tg and maximum moisture absorption ratio with the filler content can be hardly observed, however, the diffusion coefficients of these systems with filler content show the outstanding changes according to the filler size. The diffusion via free volume is dominant in the EMC with micro-sized filler; however, the diffusion with the interaction of absorption according the increase of the filler surface area is dominant in the EMC with nano-sized filler.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912010187839ZK.pdf 951KB PDF download
  文献评价指标  
  下载次数:19次 浏览次数:43次