期刊论文详细信息
International Journal of Artificial Intelligence and Knowledge Discovery
RBF Neural Networks for ECG Beat Classification and Arrhythmia Detection
Ali Khazaee1 
关键词: ECG beat classification;    premature ventricular contraction;    RBF neural network;    PSO;   
DOI  :  
学科分类:建筑学
来源: RG Education Society
PDF
【 摘 要 】

Normal0falsefalsefalse EN-USX-NONEAR-SAMicrosoftInternetExplorer4 This paper describes a method for detection of premature ventricular contractions. The method consists of four stages. First, wavelet denoising is applied for noise reduction of multi-channel high resolution ECG signals. In this stage, the Stationary Wavelet Transform is used. Second, ten ECG morphological features and one timing interval feature are calculated for each different type of ECG beat. Then a number of radial basis function (RBF) neural networks with different value of spread parameter are designed and compared their ability for classification of three different classes of ECG signals. Finally, PSO is used to optimize the RBF neural network. A classification accuracy of 100% for training dataset and 96.12% for testing dataset were achieved over seven files from the MIT-BIH arrhythmia database. /* Style Definitions */ table.MsoNormalTable{mso-style-name:"Table Normal";mso-tstyle-rowband-size:0;mso-tstyle-colband-size:0;mso-style-noshow:yes;mso-style-priority:99;mso-style-qformat:yes;mso-style-parent:"";mso-padding-alt:0in 5.4pt 0in 5.4pt;mso-para-margin:0in;mso-para-margin-bottom:.0001pt;mso-pagination:widow-orphan;font-size:11.0pt;font-family:"Calibri","sans-serif";mso-ascii-font-family:Calibri;mso-ascii-theme-font:minor-latin;mso-fareast-font-family:"Times New Roman";mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin;mso-bidi-font-family:Arial;mso-bidi-theme-font:minor-bidi;}

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912010161211ZK.pdf 11KB PDF download
  文献评价指标  
  下载次数:8次 浏览次数:10次