期刊论文详细信息
Journal of Mathematics and Statistics
Sparse Sliced Inverse Quantile Regression | Science Publications
Tahir R. Dikheel1  Ali Alkenani1 
关键词: Dimension Reduction;    Variable Selection;    Sliced Inverse Quantile Regression;    Lasso;    Adaptive Lasso;   
DOI  :  10.3844/jmssp.2016.192.200
学科分类:社会科学、人文和艺术(综合)
来源: Science Publications
PDF
【 摘 要 】

The current paper proposes the sliced inverse quantile regression method (SIQR). In addition to the latter this study proposes both the sparse sliced inverse quantile regression method with Lasso (LSIQR) and Adaptive Lasso (ALSIQR) penalties. This article introduces a comprehensive study of SIQR and sparse SIQR. The simulation and real data analysis have been employed to check the performance of the SIQR, LSIQR and ALSIQR. According to the results of median of mean squared error and the absolute correlation criteria, we can conclude that the SIQR, LSIQR and ALSIQR are the more advantageous approaches in practice.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912010160774ZK.pdf 191KB PDF download
  文献评价指标  
  下载次数:16次 浏览次数:50次