Defence Science Journal | |
Simulation of Low-velocity Impact Damage in Layered Composites using a Cohesive-based Finite Element Technique | |
Dhirendra V. Kubair1  | |
[1] Indian Institute of Science, Bangalore | |
关键词: Low-velocity impact; cohesive-based finite element technique; composites; composite laminates; simulation; impact-induced delamination; transverse matrix cracks; tractionseparation relation; critical matrix cracks; | |
DOI : | |
学科分类:社会科学、人文和艺术(综合) | |
来源: Defence Scientific Information & Documentation Centre | |
【 摘 要 】
The mechanism of damage initiation and growth in layered composites subjected to low- velocity impact is simulated using a cohesive-based finite element technique. The numerical technique used comprises cohesive elements sandwiched between the regular finite elements. The basic structure of the formulation is presented, followed by the results of the simulation. The success of this numerical technique is dependent on the cohesive model used. The cohesive model is a thermodynamic all^-based phenomenological model, describing the damage ahead of a crack tip. Details of the rate-independent cohesive model used in this study are also presented.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912010139644ZK.pdf | 489KB | download |