The Journal of General and Applied Microbiology | |
Isolation and characterization of bacterial strains Paenibacillus sp. and Bacillus sp. for kraft lignin decolorization from pulp paper mill waste | |
Hemant J. Purohit2  D. K. Patel3  Atya Kapley2  M. M. Krishna Reddy3  Shail Singh1  Ram Chandra1  | |
[1] Environmental Microbiology Section;Environmental Genomics Unit, National Environmental Engineering Research Institute;Analytical Chemistry Section, Industrial Toxicology Research Centre | |
关键词: Bacillus sp.; decolorization; GC-MS; kraft lignin; Paenibacillus sp.; pulp paper mill waste; 16S rRNA gene; | |
DOI : 10.2323/jgam.54.399 | |
学科分类:微生物学和免疫学 | |
来源: Applied Microbiology, Molecular and Cellulrar Biosciences Research Foundation | |
【 摘 要 】
Eight aerobic bacterial strains were isolated from pulp paper mill waste and screened for tolerance of kraft lignin (KL) using the nutrient enrichment technique in mineral salt media (MSM) agar plate (15 g/L) amended with different concentrations of KL (100, 200, 300, 400, 500, 600 ppm) along with 1% glucose and 0.5% peptone (w/v) as additional carbon and nitrogen sources. The strains ITRC S6 and ITRC S8 were found to have the most potential for tolerance of the highest concentration of KL. These organisms were characterized by biochemical tests and further 16S rRNA gene (rDNA) sequencing, which showed 96.5% and 95% sequence similarity of ITRC S6 and ITRC S8 and confirmed them as Paenibacillus sp. and Bacillus sp., respectively. KL decolorization was routinely monitored with a spectrophotometer and further confirmed by HPLC analysis. Among eight strains, ITRC S6 and ITRC S8 were found to degrade 500 mg/L of KL up to 47.97% and 65.58%, respectively, within 144 h of incubation in the presence of 1% glucose and 0.5% (w/v) peptone as a supplementary source of carbon and nitrogen. In the absence of glucose and peptone, these bacteria were unable to utilize KL. The analysis of lignin degradation products by GC-MS analysis revealed the formation of various acids as lignin monomers which resulted in a decrease in pH and a major change in the chromatographic profile of the bacterial degraded sample as compared to the control clear indications of biochemical modification of KL due to the bacterial ligninolytic system by ITRC S6, namely, acetic acid, propanoic acid, butanoic acid, guaiacol, hexanoic acid, and ITRC S8, namely acetic acid, propanoic acid, ethanedioic acid, furan carboxylic acid, 2-propanoic acid, butanoic acid, 3-acetoxybutyric acid, propanedioic acid, acetoguiacone, 1,2,3-thiadiazole, 5-carboxaldixime, 4-hydroxy-3,5-dimethoxyphenol, and dibutyl phthalate, indicating the bacterium characteristic to degrade G and S units of lignin polymer.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912010139001ZK.pdf | 985KB | download |