期刊论文详细信息
Marine Ecology Progress Series
High ammonium availability amplifies the adverse effect of low salinity on eelgrass Zostera marina
Fernando G. Brun1  Morten F. Pedersen1  Beatriz Villazán1  Juan J. Vergara1  Tiina Salo1 
关键词: Carbon reserves;    Dissolved inorganic nitrogen;    Eutrophication;    Hyposalinity;    Osmoregulation;    Seagrass;   
DOI  :  10.3354/meps11435
学科分类:海洋学与技术
来源: Inter-Research
PDF
【 摘 要 】

ABSTRACT: Climate change intensifies the frequency and intensity of rainfall events, which increases the discharge of freshwater and nutrients to coastal areas. This may lower salinity and increase nutrient availability and, thus, affect estuarine eelgrass populations. We studied the interactive effect of increasing NH4+ levels and low salinity on estuarine eelgrass Zostera marina, grown in microcosm at various combinations of NH4+ enrichment (0, 10 and 25 µM) and salinity (5, 12.5 and 20). Increasing NH4+ had a positive effect on eelgrass performance as long as salinity was kept at ambient level (20). N enrichment was followed by an increase in pigments, photosynthesis and various growth variables and a decrease in stored carbon concentrations (sucrose and starch). Low salinity had an overall negative effect on plant fitness; pigment concentration, photosynthesis and growth were reduced while mortality increased. Exposure to low salinity was also followed by a decrease in sucrose, suggesting that it was used as an osmolyte and/or that photosynthesis could not cover energy requirements needed for osmoregulation or repairing processes. Concomitant exposure to high NH4+ and low salinity turned the positive effect of NH4+ into a strong, negative synergistic effect. Several growth-related variables were affected significantly and mortality increased substantially. We suggest that this simultaneous exposure intensified competition for energy and C skeletons affecting other metabolic processes (e.g. growth, repair processes) negatively. Our results suggest that climate change driven alterations in precipitation and NH4+ loading might seriously impact estuarine eelgrass communities.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912010136665ZK.pdf 405KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:10次