期刊论文详细信息
Marine Ecology Progress Series
Influence of microbial community composition and metabolism on air−sea ΔpCO2 variation off the western Antarctic Peninsula
S#xe9bastien Moreau1  Irene R. Schloss1  Gast#xf3n O. Almandoz1  Serge Demers1  Martha E. Ferrario1  Behzad Mostajir1  Gustavo A. Ferreyra1 
关键词: CO2 sinks;    CO2 sources;    Phytoplankton biomass;    Phytoplankton composition;    Primary production;    Community respiration;   
DOI  :  10.3354/meps09466
学科分类:海洋学与技术
来源: Inter-Research
PDF
【 摘 要 】

ABSTRACT: We studied CO2 and O2 dynamics in the western Antarctic Peninsula (WAP) waters in relation to (1) phytoplankton biomass, (2) microbial community primary production and respiration, and (3), for the first time, phytoplankton composition, during summer and fall in 3 consecutive years (2002, 2003 and 2004). The areal average of ΔpCO2 (the difference between surface seawater and atmospheric partial pressure of CO2) for the 3 yr was significantly negative (−20.04 ± 44.3 µatm, p < 0.01) during the summer to fall period in the region, possibly indicating a CO2 sink. In the southern WAP (i.e. south of Anvers Island), ΔpCO2 was significantly negative (−43.60 ± 39.06 µatm) during fall. In the northern WAP (north of Anvers Island), ΔpCO2 values showed a more complex distribution during summer and fall (−4.96 ± 37.6 and 21.71 ± 22.39 µatm, respectively). Chlorophyll a (chl a) concentration averaged 1.03 ± 0.25 µg l−1 and was higher in the south of the peninsula. Phytoplankton composition influenced chl a concentration with higher and lower values for diatom- and phytoflagellate-dominated communities, respectively. A significant negative correlation existed between chl a and ΔpCO2. From incubation experiments performed in the northern WAP, respiration was low (averaging 5.1 mmol O2 m−3 d−1), and the net community production (NCP) correlated negatively with ΔpCO2 and positively with %O2 saturation. However, despite the high NCP values measured, ΔpCO2 was significantly positive in the northern WAP during the summer to fall period. Strong mixing and lower chl a concentration may explain this result. In contrast, ΔpCO2 was significantly negative in the southern WAP, possibly because of high surface water chl a concentration.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912010134710ZK.pdf 1710KB PDF download
  文献评价指标  
  下载次数:10次 浏览次数:22次