期刊论文详细信息
Marine Ecology Progress Series
Ocean acidification does not affect the early life history development of a tropical marine fish
Monica Gagliano1  Philip L. Munday1  Danielle L. Dixson1  Simon R. Thorrold1  Jennifer M. Donelson1 
关键词: Carbon dioxide;    Hypercapnia;    Development;    Growth rate;    Survival;    Otolith;    Skeleton;    Calcification;    Coral reef fish;   
DOI  :  10.3354/meps08990
学科分类:海洋学与技术
来源: Inter-Research
PDF
【 摘 要 】

ABSTRACT: Determining which marine species are sensitive to elevated CO2 and reduced pH, and which species tolerate these changes, is critical for predicting the impacts of ocean acidification on marine biodiversity and ecosystem function. Although adult fish are thought to be relatively tolerant to higher levels of environmental CO2, very little is known about the sensitivity of juvenile stages, which are usually much more vulnerable to environmental change. We tested the effects of elevated environmental CO2 on the growth, survival, skeletal development and otolith (ear bone) calcification of a common coral reef fish, the spiny damselfish Acanthochromis polyacanthus. Newly hatched juveniles were reared for 3 wk at 4 different levels of PCO2(seawater) spanning concentrations already experienced in near-reef waters (450 µatm CO2) to those predicted to occur over the next 50 to 100 yr in the IPCC A2 emission scenario (600, 725, 850 µatm CO2). Elevated PCO2 had no effect on juvenile growth or survival. Similarly, there was no consistent variation in the size of 29 different skeletal elements that could be attributed to CO2 treatments. Finally, otolith size, shape and symmetry (between left and right side of the body) were not affected by exposure to elevated PCO2, despite the fact that otoliths are composed of aragonite. This is the first comprehensive assessment of the likely effects of ocean acidification on the early life history development of a marine fish. Our results suggest that juvenile A. polyacanthus are tolerant of moderate increases in environmental CO2 and that further acidification of the ocean will not, in isolation, have a significant effect on the early life history development of this species, and perhaps other tropical reef fishes

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912010134190ZK.pdf 567KB PDF download
  文献评价指标  
  下载次数:27次 浏览次数:20次