Marine Ecology Progress Series | |
Effects of hypoxia on Mnemiopsis leidyi, ichthyoplankton and copepods: clearance rates and vertical habitat overlap | |
Sarah E. Kolesar1  Jennifer E. Purcell1  Denise L. Breitburg1  Mary Beth Decker1  | |
关键词: Bay anchovy; Naked goby; Fish egg; Fish larva; Ctenophore; Predation; Food web; Chesapeake Bay; Eutrophication; Gelatinous zooplankton; | |
DOI : 10.3354/meps08656 | |
学科分类:海洋学与技术 | |
来源: Inter-Research | |
【 摘 要 】
ABSTRACT: Differences in predator and prey tolerances to low dissolved oxygen (DO) concentrations influence planktonic food web interactions in seasonally hypoxic environments. We examined low-DO effects on predation by hypoxia-tolerant ctenophores, Mnemiopsis leidyi, on less hypoxia-tolerant ichthyoplankton prey in laboratory experiments. We also examined the relationship between bottom DO concentrations and vertical distributions, and considered potential effects of biotic (predators and competitors) versus abiotic factors (low DO concentration, temperature, salinity, time of day) on vertical habitat overlaps between gelatinous zooplankton and their prey during summer in a Chesapeake Bay subestuary. Laboratory clearance rates of M. leidyi feeding on bay anchovy (Anchoa mitchilli) eggs and yolk sac larvae, and naked goby (Gobiosoma bosc) larvae were as high at low DO (1.5 mg l–1) as at high DO concentrations (7 mg l–1). Multiple years of field sampling at 2 sites revealed that the proportions of motile species in the bottom layer of the water column, especially fish larvae and copepods, increased with increasing bottom DO concentrations during both day and night. Ctenophore densities remained high in the bottom layer even at low DO concentrations. Vertical habitat overlaps among 4 motile predator–prey pairs (M. leidyi–copepods, M. leidyi–naked goby larvae, bay anchovy larvae–copepods, and naked goby larvae–copepods) increased with increasing bottom DO concentrations (1st- or 2nd-order regression models). Vertical overlap between M. leidyi and fish eggs was significantly higher during the day than at night. Statistical models suggest that both bottom DO concentration and scyphomedusan predators influenced M. leidyi–fish egg nighttime and M. leidyi–copepod combined day–night overlaps. Hypoxia influences food web interactions more through altered habitat use and encounter rates than by directly affecting predation. Strong behavioral responses of larval fish and copepods to low bottom DO concentrations may decrease habitat overlap between M. leidyi predators and their prey.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912010133898ZK.pdf | 722KB | download |