| Diseases of Aquatic Organisms | |
| Caribbean yellow band disease compromises the activity of catalase and glutathione S-transferase in the reef-building coral Orbicella faveolata exposed to anthracene | |
| Ruth Ramos1  Luis Miguel Montilla1  Aldo Cróquer1  Elia García1  | |
| 关键词: Caribbean yellow band disease; Orbicella faveolata; Enzymatic biomarkers; Anthracene; Catalase; Glutathione S-transferase; | |
| DOI : 10.3354/dao02980 | |
| 学科分类:生物科学(综合) | |
| 来源: Inter-Research | |
PDF
|
|
【 摘 要 】
ABSTRACT: Healthy and diseased corals are threatened by different anthropogenic sources, such as pollution, a problem expected to become more severe in the near future. Despite the fact that coastal pollution and coral diseases might represent a serious threat to coral reef health, there is a paucity of controlled experiments showing whether the response of diseased and healthy corals to xenobiotics differs. In this study, we exposed healthy and Caribbean yellow band disease (CYBD)-affected Orbicella faveolata colonies to 3 sublethal concentrations of anthracene to test if enzymatic responses to this hydrocarbon were compromised in CYBD-affected tissues. For this, a 2-factorial fully orthogonal design was used in a controlled laboratory bioassay, using tissue condition (2 levels: apparently healthy and diseased) and pollutant concentration (4 levels: experimental control, 10, 30 and 100 ppb concentration) as fixed factors. A permutation-based ANOVA (PERMANOVA) was used to test the effects of condition and concentration on the specific activity of 3 enzymatic biomarkers: catalase, glutathione S-transferase, and glutathione peroxidase. We found a significant interaction between the concentration of anthracene and the colony condition for catalase (Pseudo-F = 3.84, df = 3, p < 0.05) and glutathione S-transferase (Pseudo-F = 3.29, df = 3, p < 0.05). Moreover, our results indicated that the enzymatic response to anthracene in CYBD-affected tissues was compromised, as the activity of these enzymes decreased 3- to 4-fold compared to healthy tissues. These results suggest that under a potential scenario of increasing hydrocarbon coastal pollution, colonies of O. faveolata affected with CYBD might become more vulnerable to the deleterious effects of chemical pollution.
【 授权许可】
Unknown
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO201911300879304ZK.pdf | 8KB |
PDF