期刊论文详细信息
American Journal of Applied Sciences
Direct Model Reference Adaptive Controller Based-On Neural-Fuzzy Techniques for Nonlinear Dynamical Systems| Science Publications
Hafizah Husain1  Marzuki Khalid1  Rubiyah Yusof1 
关键词: Neural fuzz;    model reference adaptive control system;    radial basis function;    similarity index;    fuzzy c-means;   
DOI  :  10.3844/ajassp.2008.769.776
学科分类:自然科学(综合)
来源: Science Publications
PDF
【 摘 要 】

This paper presents a direct neural-fuzzy-based Model Reference Adaptive Controller (MRAC) for nonlinear dynamical systems with unknown parameters. The two-phase learning is implemented to perform structure identification and parameter estimation for the controller. In the first phase, similarity index-based fuzzy c-means clustering technique extracts the fuzzy rules in the premise part for the neural-fuzzy controller. This technique enables the recruitment of rule parameters in accordance to the number of clusters and kernel centers it automatically generated. In the second phase, the parameters of the controller are directly tuned from the training data via the tracking error. The consequent parts of the rules are thus determined. This iterative process employs Radial Basis Function Neural Network (RBFNN) structure with a reference model to provide a closed-loop performance feedback.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201911300806778ZK.pdf 298KB PDF download
  文献评价指标  
  下载次数:10次 浏览次数:13次