期刊论文详细信息
Data Science Journal
H-Metric: Characterizing Image Datasets via Homogenization Based on KNN-Queries
Sergio F. da Silva2  Agma J. M. Traina2  Welington M. da Silva1  Jose F. Rodrigues Jr.2 
[1] Universidade Federal de Sao Carlos - Campus Sorocaba - Rodovia Joao Leme dos Santos;Inst. de Ciencias Matematicas e de Computacao - Universidade de Sao Paulo
关键词: Content-based image retrieval;    Metric spaces;    Precision-Recall;   
DOI  :  10.2481/dsj.10-007
学科分类:计算机科学(综合)
来源: Ubiquity Press Ltd.
PDF
【 摘 要 】

References(8)Precision-Recall is one of the main metrics for evaluating content-based image retrieval techniques. However, it does not provide an ample perception of the properties of an image dataset immersed in a metric space. In this work, we describe an alternative metric named H-Metric, which is determined along a sequence of controlled modifications in the image dataset. The process is named homogenization and works by altering the homogeneity characteristics of the classes of the images. The result is a process that measures how hard it is to deal with a set of images in respect to content-based retrieval, offering support in the task of analyzing configurations of distance functions and of features extractors.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201911300797431ZK.pdf 658KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:6次