期刊论文详细信息
IEICE Electronics Express
K-maximin clustering: a maximin correlation approach to partition-based clustering
Sungroh Yoon3  Seung Jean Kim1  Eui-Young Chung2  Taehoon Lee3 
[1] Electrical Eng., Stanford University;Electrical and Electronic Eng., Yonsei University;Electrical Eng., Korea University
关键词: data mining;    clustering;    maximin correlation;    k-means;   
DOI  :  10.1587/elex.6.1205
学科分类:电子、光学、磁材料
来源: Denshi Jouhou Tsuushin Gakkai
PDF
【 摘 要 】

References(4)Cited-By(1)We propose a new clustering algorithm based upon the maximin correlation analysis (MCA), a learning technique that can minimize the maximum misclassification risk. The proposed algorithm resembles conventional partition clustering algorithms such as k-means in that data objects are partitioned into k disjoint partitions. On the other hand, the proposed approach is unique in that an MCA-based approach is used to decide the location of the representative point for each partition. We test the proposed technique with typography data and show our approach outperforms the popular k-means and k-medoids clustering in terms of retrieving the inherent cluster membership.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201911300743592ZK.pdf 537KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:20次