期刊论文详细信息
Journal of Computer Science
HYPERPARAMETER SELECTION IN KERNEL PRINCIPAL COMPONENT ANALYSIS | Science Publications
Md. Ashad Alam1  Kenji Fukumizu1 
关键词: Kernel Principal Component Analysis;    Pre-Image;    Kernel Choice;    Cross-Validation;   
DOI  :  10.3844/jcssp.2014.1139.1150
学科分类:计算机科学(综合)
来源: Science Publications
PDF
【 摘 要 】

In kernel methods, choosing a suitable kernel is indispensable for favorable results. No well-founded methods, however, have been established in general for unsupervised learning. We focus on kernel Principal Component Analysis (kernel PCA), which is a nonlinear extension of principal component analysis and has been used electively for extracting nonlinear features and reducing dimensionality. As a kernel method, kernel PCA also suffers from the problem of kernel choice. Although cross-validation is a popular method for choosing hyperparameters, it is not applicable straightforwardly to choose a kernel in kernel PCA because of the incomparable norms given by different kernels. It is important, thus, to develop a well-founded method for choosing a kernel in kernel PCA. This study proposes a method for choosing hyperparameters in kernel PCA (kernel and the number of components) based on cross-validation for the comparable reconstruction errors of pre-images in the original space. The experimental results on synthesized and real-world datasets demonstrate that the proposed method successfully selects an appropriate kernel and the number of components in kernel PCA in terms of visualization and classification errors on the principal components. The results imply that the proposed method enables automatic design of hyperparameters in kernel PCA.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201911300614679ZK.pdf 293KB PDF download
  文献评价指标  
  下载次数:14次 浏览次数:23次