IEICE Electronics Express | |
High performance sparse matrix-vector multiplication on FPGA | |
Shice Ni1  Song Guo1  Yong Dou1  Dan Zou1  | |
[1] National Laboratory for Parallel and Distributed Processing, National University of Defense Technology | |
关键词: FPGA; sparse matrix-vector multiplication; reconfigurable computing; multi-channel memory; | |
DOI : 10.1587/elex.10.20130529 | |
学科分类:电子、光学、磁材料 | |
来源: Denshi Jouhou Tsuushin Gakkai | |
【 摘 要 】
References(7)Cited-By(2)This paper presents the design and implementation of a high performance sparse matrix-vector multiplication (SpMV) on field-programmable gate array (FPGA). By proposing a new storage format to compress the indexes of non-zero elements by exploiting the substructure of the sparse matrix, our SpMV implementation on a reconfigurable computing platform with a multi-channel memory subsystem is capable of obtaining similar performance by using a single FPGA to that of a highly optimized BFS implementation on a commercial heterogeneous system containing four FPGAs.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201911300557325ZK.pdf | 277KB | download |