期刊论文详细信息
IEICE Electronics Express
High performance sparse matrix-vector multiplication on FPGA
Shice Ni1  Song Guo1  Yong Dou1  Dan Zou1 
[1] National Laboratory for Parallel and Distributed Processing, National University of Defense Technology
关键词: FPGA;    sparse matrix-vector multiplication;    reconfigurable computing;    multi-channel memory;   
DOI  :  10.1587/elex.10.20130529
学科分类:电子、光学、磁材料
来源: Denshi Jouhou Tsuushin Gakkai
PDF
【 摘 要 】

References(7)Cited-By(2)This paper presents the design and implementation of a high performance sparse matrix-vector multiplication (SpMV) on field-programmable gate array (FPGA). By proposing a new storage format to compress the indexes of non-zero elements by exploiting the substructure of the sparse matrix, our SpMV implementation on a reconfigurable computing platform with a multi-channel memory subsystem is capable of obtaining similar performance by using a single FPGA to that of a highly optimized BFS implementation on a commercial heterogeneous system containing four FPGAs.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201911300557325ZK.pdf 277KB PDF download
  文献评价指标  
  下载次数:15次 浏览次数:9次