Journal of Computer Science | |
A New Modified Gaussian Mixture Model for Color-Texture Segmentation | Science Publications | |
M. Sujaritha1  S. Annadurai1  | |
关键词: Gaussian mixture model; Expectation Maximization (EM); Bayesian pixel classification; color texture segmentation; MAP estimation; EM algorithm; Maximum A Posteriori (MAP); Spatially Variant Finite Mixture Model (SVFMM); Markov Random Field (MRF); Probabilistic Rand Index (PRI); Boundary Displacement Errors (BDE); Variation of Information (VoI); | |
DOI : 10.3844/jcssp.2011.279.283 | |
学科分类:计算机科学(综合) | |
来源: Science Publications | |
【 摘 要 】
Problem statement: This study presents a new, simple and efficient modified Gaussianmixture model based clustering algorithm for color-texture segmentation. The proposed mixture modelintroduces a new component density function which incorporates spatial information and the weightingfactor for neighborhood effect is fully adaptive to the image content. Approach: It enhances thesmoothness towards piecewise-homogeneous segmentation and reduces the edge-blurring effect. AnExpectation Maximization (EM) model fitting Maximum A Posteriori (MAP) algorithm segments theimage by utilizing the pixel
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201911300517395ZK.pdf | 222KB | download |