期刊论文详细信息
Proceedings of the Nutrition Society
The molecular basis of copper and iron interactions
Paul Sharp1 
关键词: Cu;    Fe;    Anaemia;    Caeruloplasmin;    DMT1;   
DOI  :  10.1079/PNS2004386
学科分类:卫生学
来源: Cambridge University Press
PDF
【 摘 要 】

The intimate relationship between Fe and Cu in human nutrition has been recognised for many years. The best-characterised link is provided by caeruloplasmin, a multiCu-binding protein that acts as a serum ferrioxidase and is essential for the mobilisation of Fe from storage tissues. Decreased Cu status has been shown to reduce holo-caeruloplasmin production and impair ferrioxidase activity, leading, in a number of cases, to decreased tissue Fe release and the generation of anaemia that is responsive to dietary supplementation with Cu but not Fe. Dietary Fe absorption also requires the presence of a multiCu ferrioxidase. Hephaestin, a caeruloplasmin homologue, works in concert with the IREG1 transporter to permit Fe efflux from enterocytes for loading onto transferrin. The essential role of hephaestin in this process has been recognised from studies in the sex-linked anaemic (sla) mouse, in which Fe efflux is markedly impaired as a result of a mutation in the hephaestin gene that results in a truncated and non-functional version of the protein. There is emerging evidence that a number of other components of the intestinal Fe transport pathway are also Cu sensitive. Divalent metal transporter 1 (DMT1), the Fe transporter located at the apical membrane of enterocytes, is also a physiologically-relevant Cu transporter, suggesting that these two metals may compete with each other for uptake into the duodenal enterocytes. Furthermore, expression of both DMT1 and the basolateral Fe-efflux transporter IREG1 can be regulated by Cu, suggesting that the Fe–Cu relationship may be more complex than first thought.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201911300496924ZK.pdf 113KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:22次