期刊论文详细信息
Journal of Computer Science
CONTENT BASED BATIK IMAGE CLASSIFICATION USING WAVELET TRANSFORM AND FUZZY NEURAL NETWORK | Science Publications
Abdul Haris Rangkuti1 
关键词: Batik Image;    Wavelet Transform;    Daubechies;    Fuzzy Neural Network;    Fuzzification;    Rule Generation;    Classification;   
DOI  :  10.3844/jcssp.2014.604.613
学科分类:计算机科学(综合)
来源: Science Publications
PDF
【 摘 要 】

In this paper we introduce the content-based image classification using wavelet transform with Daubechies type 2 level 2 to process the characteristic texture consisting of standard deviation, mean and energy as Input variables, using the method of Fuzzy Neural Network (FNN). All the input value will be processed using fuzzyfication with 5 categories namely Very Low (VL), Low (L), Medium (M), High (H) and Very High (VH). The result will be fuzzy input in the process of classification with neural network method. Batik images will be processed using 7 (seven) types of batik motif which is ceplok, kawung, lereng, parang, megamendung, tambal and nitik. The results of the classification process using FNN is Rule generation, such that for a new image of batik motif types can be immediately determined after FNN classification is completed. For the level of precision, this method is between 90-92%, including if we use the rule generation to determine the level precision is between 90-92%.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201911300289210ZK.pdf 252KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:16次