Aquatic Microbial Ecology | |
Denitrification by sulfur-oxidizing bacteria in a eutrophic lake | |
Stephen K. Hamilton1  Stuart E. Jones1  Jay T. Lennon1  Amy J. Burgin1  | |
关键词: Denitrification; Nitrate reduction; Sulfur oxidation; Sulfur-driven denitrification; Sulfurimonas denitrificans; Sulfide; Wintergreen Lake; | |
DOI : 10.3354/ame01574 | |
学科分类:生物科学(综合) | |
来源: Inter-Research | |
【 摘 要 】
ABSTRACT: Understanding the mechanistic controls of microbial denitrification is of central importance to both environmental microbiology and ecosystem ecology. Loss of nitrate (NO3−) is often attributed to carbon-driven (heterotrophic) denitrification. However, denitrification can also be coupled to sulfur (S) oxidation by chemolithoautotrophic bacteria. In the present study, we used an in situ stable isotope (15NO3−) tracer addition in combination with molecular approaches to understand the contribution of sulfur-oxidizing bacteria to the reduction of NO3− in a eutrophic lake. Samples were incubated across a total dissolved sulfide (H2S) gradient (2 to 95 µM) between the lower epilimnion and the upper hypolimnion. Denitrification rates were low at the top of the chemocline (4.5 m) but increased in the deeper waters (5.0 and 5.5 m), where H2S was abundant. Concomitant with increased denitrification at depths with high sulfide was the production of sulfate (SO42−), suggesting that the added NO3− was used to oxidize H2S to SO42−. Alternative nitrate removal pathways, including dissimilatory nitrate reduction to ammonium (DNRA) and anaerobic ammonium oxidation (anammox), did not systematically change with depth and accounted for 1 to 15% of the overall nitrate loss. Quantitative PCR revealed that bacteria of the Sulfurimonas genus that are known denitrifiers increased in abundance in response to NO3− addition in the treatments with higher H2S. Stoichiometric estimates suggest that H2S oxidation accounted for more than half of the denitrification at the depth with the highest sulfide concentration. The present study provides evidence that microbial coupling of S and nitrogen (N) cycling is likely to be important in eutrophic freshwater ecosystems.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201911300243842ZK.pdf | 8KB | download |