期刊论文详细信息
Journal of Computer Science
Parameter Settings for New Generational Genetic Algorithms for Solving Global Optimization Problems | Science Publications
Siew Mooi Lim1  Abu Bakar Md. Sultan1  Md. Nasir Sulaiman1  Norwati Mustapha1 
关键词: Genetic Algorithms;    Parameter Settings;    Taguchi Method;   
DOI  :  10.3844/jcssp.2015.1025.1031
学科分类:计算机科学(综合)
来源: Science Publications
PDF
【 摘 要 】

This study operates within experimental design with two main tools of Taguchi method namely orthogonal array and signal to noise ratio to discover the optimal parameter settings for newly proposed generational genetic algorithms; they are Laplace Crossover-Scale Truncated Pareto Mutation (LX-STPM) and Rayleigh Crossover-Scale Truncated Pareto Mutation (RX-STPM). It concluded that GA parameter settings are algorithms and problems dependent.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201911300204041ZK.pdf 185KB PDF download
  文献评价指标  
  下载次数:9次 浏览次数:15次