期刊论文详细信息
IEICE Electronics Express
Two-fold regularization for kernel Fisher discriminant analysis in face recognition
Sang-Ki Kim1  Kar-Ann Toh1  Sangyoun Lee1 
[1] Department of Electrical and Electronic Engineering, Biometrics Engineering Research Center, Yonsei University
关键词: face recognition;    subspace learning;    kernel discriminant analysis;   
DOI  :  10.1587/elex.6.540
学科分类:电子、光学、磁材料
来源: Denshi Jouhou Tsuushin Gakkai
PDF
【 摘 要 】

References(6)Cited-By(1)Due to the inherent nature of kernel implementation, the kernel Fisher discriminant suffers from the small sample size problem. In this paper, we introduce a novel variant of the kernel Fisher discriminant formulation to circumvent this problem. By adopting a two-fold regularization scheme on the scatter matrices, we show both effectiveness and reliability of the proposed method particularly regarding the small sample size and the lack of dimensionality issues.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201911300100806ZK.pdf 185KB PDF download
  文献评价指标  
  下载次数:8次 浏览次数:4次