期刊论文详细信息
Aquatic Microbial Ecology
Effects of microzooplankton growth and trophic interactions on herbivory in coastal and offshore environments
Adrian B. Burd1  Peter J. Lavrentyev1  Matthew R. First1  Harlan L. Miller III1  James L. Pinckney1 
关键词: Serial dilution experiments;    Microbial food web;    Microplankton;    Food web model;    Ciliates;    Dinoflagellates;    Trophic cascades;    Zooplankton;   
DOI  :  10.3354/ame01271
学科分类:生物科学(综合)
来源: Inter-Research
PDF
【 摘 要 】

ABSTRACT: We performed serial dilution experiments to estimate rates of gross phytoplankton growth (μ) and grazing mortality (m) in both eutrophic (Corpus Christi Bay, Texas, USA) and oligotrophic (offshore Gulf of Mexico) waters. Two parallel experiments were performed in both environments, with seawater pre-screened through 153 or 25 µm mesh to observe the responses of microzooplankton (MZP) to dilution treatments. MZP biomass changed over the duration of the experimental incubations; in several treatments, MZP net growth rates were >1 d–1. Patterns of growth varied between dilutions and initial screening size. In the eutrophic system, the ratio of phytoplankton grazing mortality rate to gross phytoplankton growth rate (m/μ) was 1.10 ± 0.54 (mean ± SD) versus 0.41 ± 0.65 when screened through 153 and 25 µm mesh, respectively. This difference was attributed to cascading trophic interactions among MZP size groups leading to suppression of the primary herbivores in the 25 µm fraction and, in turn, a lower value of m. A food web model consisting of multiple trophic levels was constructed to examine the role of MZP growth and trophic interactions on measurements of μ and m. The model, using 3 interacting groups of MZP, was able to reproduce experimental results. Model simulations demonstrated that MZP growth during incubation leads to an overestimation of m. Non-linearity in the phytoplankton growth response curves was due to MZP growth and trophic interactions in these model simulations, as variable feeding responses were not incorporated into the models. Trophic interactions among MZP can provide context to measurements of μ and m and insight into microbial food web efficiency.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201911300029961ZK.pdf 905KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:6次