International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences | |
STEREO IMAGE DENSE MATCHING BY INTEGRATING SIFT AND SGM ALGORITHM | |
Song, Y.^11  Zhou, Y.^12  | |
[1] China Railway Engineering Consulting Group Co., Ltd^2;Faculty of Information Engineering, China University of Geosciences, Wuhan, China^1 | |
关键词: Stereo Matching; Semi-Global Matching; SIFT; Dense Matching; Disparity Estimation; Census; | |
DOI : 10.5194/isprs-archives-XLII-3-2565-2018 | |
学科分类:地球科学(综合) | |
来源: Copernicus Publications | |
【 摘 要 】
Semi-global matching(SGM) performs the dynamic programming by treating the different path directions equally. It does not consider the impact of different path directions on cost aggregation, and with the expansion of the disparity search range, the accuracy and efficiency of the algorithm drastically decrease. This paper presents a dense matching algorithm by integrating SIFT and SGM. It takes the successful matching pairs matched by SIFT as control points to direct the path in dynamic programming with truncating error propagation. Besides, matching accuracy can be improved by using the gradient direction of the detected feature points to modify the weights of the paths in different directions. The experimental results based on Middlebury stereo data sets and CE-3 lunar data sets demonstrate that the proposed algorithm can effectively cut off the error propagation, reduce disparity search range and improve matching accuracy.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201911049796102ZK.pdf | 1138KB | download |