期刊论文详细信息
Beilstein Journal of Nanotechnology
Graphene–graphite hybrid epoxy composites with controllable workability for thermal management
Idan Levy^1^2^3^41  Eyal Merary Wormser^12  Maxim Varenik^1^2^3^43  Matat Buzaglo^14 
[1]Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel^1
[2]Department of Chemistry, Nuclear Research Center Negev, P.O.B.9001, Beer-Sheva 84190, Israel^2
[3]Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 7610001, Israel,^3
[4]Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel more less^4
关键词: hybrid composites;    nanocomposites;    rheology;    thermal interface material;    thermal properties;   
DOI  :  10.3762/bjnano.10.9
学科分类:地球科学(综合)
来源: Beilstein - Institut zur Foerderung der Chemischen Wissenschaften
PDF
【 摘 要 】
The substantial heat generation in highly dense electronic devices requires the use of materials tailored to facilitate efficient thermal management. The design of such materials may be based on the loading of thermally conductive fillers into the polymer matrix applied – as a thermal interface material – on the interface between two surfaces to reduce contact resistance. On the one hand, these additives enhance the thermal conductivity of the composite, but on the other hand, they increase the viscosity of the composite and hence impair its workability. This in turn could negatively affect the device–matrix interface. To address this problem, we suggest a tunable composite material comprising a combination of two different carbon-based fillers, graphene nanoplatelets (GNPs) and graphite. By adjusting the GNP:graphite concentration ratio and the total concentration of the fillers, we were able to fine tune the thermal conductivity and the workability of the hybrid polymer composite. To facilitate the optimal design of materials for thermal management, we constructed a ‘concentration–thermal conductivity–viscosity phase diagram’. This hybrid approach thus offers solutions for thermal management applications, providing both finely tuned composite thermal properties and workability. We demonstrate the utility of this approach by fabricating a thermal interface material with tunable workability and testing it in a model electronic device.
【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201911048605342ZK.pdf 1806KB PDF download
  文献评价指标  
  下载次数:17次 浏览次数:17次