期刊论文详细信息
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
EIGENENTROPY BASED CONVOLUTIONAL NEURAL NETWORK BASED ALS POINT CLOUDS CLASSIFICATION METHOD
Xu, Z.^11  Yang, Z.^22 
[1] Airborne patrolling center of Guangdong power grid Co.,Ltd^1;State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing of Wuhan University, Wuhan 430079, China^2
关键词: EIGENENTROPY BASED CONVOLUTIONAL NEURAL NETWORK BASED ALS POINT CLOUDS CLASSIFICATION METHOD;   
DOI  :  10.5194/isprs-archives-XLII-3-2017-2018
学科分类:地球科学(综合)
来源: Copernicus Publications
PDF
【 摘 要 】

The classification of point clouds is the first step in the extraction of various types of geo-information form point clouds. Recently the ISPRS WG II/4 provides a benchmark on 3D semantic labelling, a convolutional neural network based method achieves the best overall accuracy performance in all participants who only use the geometrical and waveform based features extracted from the ALS data. Features of the point are calculated in different scales to achieve the best performance. It is not efficiency for the future use. In this paper, we use an eigenentropy based scale selection strategy to improve this method. The scale selection strategy improves the average F1 score and makes the classification method more simple and efficient.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201911048153674ZK.pdf 1247KB PDF download
  文献评价指标  
  下载次数:14次 浏览次数:60次