| International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences | |
| SPECTRAL-SPATIAL CLASSIFICATION OF HYPERSPECTRAL REMOTE SENSING IMAGES USING VARIATIONAL AUTOENCODER AND CONVOLUTION NEURAL NETWORK | |
| Belwalkar, A.^11  | |
| [1] Dept. of Civil Engineering, Indian Institute of Technology Kanpur, India^1 | |
| 关键词: Hyperspectral; classification; feature extraction; spectral channels; deep learning; | |
| DOI : 10.5194/isprs-archives-XLII-5-613-2018 | |
| 学科分类:地球科学(综合) | |
| 来源: Copernicus Publications | |
PDF
|
|
【 摘 要 】
In this paper, we propose a spectral-spatial feature extraction framework based on deep learning (DL) for hyperspectral image (HSI) classification. In this framework, the variational autoencoder (VAE) is used for extraction of spectral features from two widely used hyperspectral datasets- Kennedy Space Centre, Florida and University of Pavia, Italy. Additionally, a convolutional neural network (CNN) is utilized to obtain spatial features. The spatial and spectral feature vectors are then stacked together to form a joint feature vector. Finally, the joint feature vector is trained using multinomial logistic regression (softmax regression) for prediction of class labels. The classification performance analysis is done through generation of the confusion matrix. The confusion matrix is then used to calculate Cohen’s Kappa (Κ) to get a quantitative measure of classification performance. The results show that the K value is higher than 0.99 for both HSI datasets.
【 授权许可】
CC BY
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO201911047320085ZK.pdf | 1297KB |
PDF