期刊论文详细信息
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
GROUND PENETRATING RADAR DATA INTERPRETATION USING ELECTROMAGNETIC FIELD ANALYSIS FOR SEA ICE THICKNESS MEASUREMENT
Yoshimura, M.^21  Cho, K.^32  Matsumoto, M.^13  Naoki, K.^34 
[1] Center for Spatial Information Science, The University of Tokyo, Meguro-ku, Tokyo, Japan^2;Nihon University, 1 Nakagawara, Tokusada, Tamura, Koriyama, Japan^4;PASCO CORPORATION, 2-8-10, Higashiyama, Meguro-ku, Tokyo, Japan^1;Tokai University, 2-28-4, Tomigaya, Shibuya-ku, Tokyo, Japan^3
关键词: Sea ice thickness measurement;    Ground truth;    Ground Penetrating Radar;    Brackish lake;    Finite-Difference Time-Domain method;    Dielectric constant;    Multiple reflection;   
DOI  :  10.5194/isprs-archives-XLII-3-W7-47-2019
学科分类:地球科学(综合)
来源: Copernicus Publications
PDF
【 摘 要 】

Observation of sea ice thickness by remote sensing is one of key issues to understand an effect of global warming. However, ground truth must be necessary to discuss this kind of approach. Although there are several methods to acquire ice thickness, Ground Penetrating Radar (GPR) can be good solution because it can discriminate snow-ice and ice-sea water interface thanks to comparative higher spatial resolution than the other methods. In this paper, we carried out GPR measurement in brackish lake and an electromagnetic field analysis in order to interpret the GPR data. The simulation model was assumed considering the actual snow and ice thickness acquired in field measurement. From the simulation results, although it seems difficult to identify the reflection at snow and ice interface due to a thin layer thickness and a low dielectric constant, snow and ice thickness may be estimated by using multiple reflection components.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201911045419042ZK.pdf 1109KB PDF download
  文献评价指标  
  下载次数:11次 浏览次数:28次