期刊论文详细信息
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
REAL-TIME AND SEAMLESS MONITORING OF GROUND-LEVEL PM2.5 USING SATELLITE REMOTE SENSING
Chengyue Zhang^11  Tongwen Li^12  Qiangqiang Yuan^2,43  Huanfeng Shen^1,44 
[1] School of Geodesy and Geomatics, Wuhan University, Wuhan, China^2;School of Resource and Environmental Sciences, Wuhan University, Wuhan, China^1;The Collaborative Innovation Center for Geospatial Technology, Wuhan, China^4;The State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China^3
关键词: PM2.5;    Satellite remote sensing;    Real-time;    Seamless;    Deep learning;    Spatio-temporal fusion;   
DOI  :  10.5194/isprs-annals-IV-3-143-2018
学科分类:地球科学(综合)
来源: Copernicus Publications
PDF
【 摘 要 】

Satellite remote sensing has been reported to be a promising approach for the monitoring of atmospheric PM2.5. However, the satellite-based monitoring of ground-level PM2.5 is still challenging. First, the previously used polar-orbiting satellite observations, which can be usually acquired only once per day, are hard to monitor PM2.5 in real time. Second, many data gaps exist in satellitederived PM2.5 due to the cloud contamination. In this paper, the hourly geostationary satellite (i.e., Harawari-8) observations were adopted for the real-time monitoring of PM2.5 in a deep learning architecture. On this basis, the satellite-derived PM2.5 in conjunction with ground PM2.5 measurements are incorporated into a spatio-temporal fusion model to fill the data gaps. Using Wuhan Urban Agglomeration as an example, we have successfully derived the real-time and seamless PM2.5 distributions. The results demonstrate that Harawari-8 satellite-based deep learning model achieves a satisfactory performance (out-of-sample cross-validation R2 = 0.80, RMSE = 17.49 μg/m3) for the estimation of PM2.5. The missing data in satellite-derive PM2.5 are accurately recovered, with R2 between recoveries and ground measurements of 0.75. Overall, this study has inherently provided an effective strategy for the realtime and seamless monitoring of ground-level PM2.5

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201911044499760ZK.pdf 1032KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:9次