Electronic Communications in Probability | |
A radial invariance principle for non-homogeneous random walks | |
Nicholas Georgiou1  | |
关键词: non-homogeneous random walk; invariance principle; Bessel process; | |
DOI : 10.1214/18-ECP159 | |
学科分类:统计和概率 | |
来源: Institute of Mathematical Statistics | |
【 摘 要 】
Consider non-homogeneous zero-drift random walks in $\mathbb{R} ^d$, $d \geq 2$, with the asymptotic increment covariance matrix $\sigma ^2 (\mathbf{u} )$ satisfying $\mathbf{u} ^{\top } \sigma ^2 (\mathbf{u} ) \mathbf{u} = U$ and $\operatorname{tr} \sigma ^2 (\mathbf{u} ) = V$ in all in directions $\mathbf{u} \in \mathbb{S} ^{d-1}$ for some positive constants $U
CC BY 【 授权许可】
【 预 览 】
Files
Size
Format
View
RO201910288478979ZK.pdf
457KB
PDF
download