期刊论文详细信息
| Electronic Communications in Probability | |
| Rigidity of the $\operatorname{Sine} _{\beta }$ process | |
| Chhaibi Reda1  | |
| 关键词: the sine$_ eta $ point process; rigidity of point processes; random matrices; | |
| DOI : 10.1214/18-ECP195 | |
| 学科分类:统计和概率 | |
| 来源: Institute of Mathematical Statistics | |
PDF
|
|
【 摘 要 】
We show that the $\operatorname{Sine} _{\beta }$ point process, defined as the scaling limit of the Circular Beta Ensemble when the dimension goes to infinity, and generalizing the determinantal sine-kernel process, is rigid in the sense of Ghosh and Peres: the number of points in a given bounded Borel set $B$ is almost surely equal to a measurable function of the position of the points outside $B$.
【 授权许可】
CC BY
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO201910286853093ZK.pdf | 209KB |
PDF