期刊论文详细信息
Electronic Communications in Probability
Block size in Geometric($p$)-biased permutations
Irina Cristali1 
关键词: regenerative permutations;    Bernoulli sieve;   
DOI  :  10.1214/18-ECP182
学科分类:统计和概率
来源: Institute of Mathematical Statistics
PDF
【 摘 要 】

Fix a probability distribution $\mathbf p = (p_1, p_2, \ldots )$ on the positive integers. The first block in a $\mathbf p$-biased permutation can be visualized in terms of raindrops that land at each positive integer $j$ with probability $p_j$. It is the first point $K$ so that all sites in $[1,K]$ are wet and all sites in $(K,\infty )$ are dry. For the geometric distribution $p_j= p(1-p)^{j-1}$ we show that $p \log K$ converges in probability to an explicit constant as $p$ tends to 0. Additionally, we prove that if $\mathbf p$ has a stretch exponential distribution, then $K$ is infinite with positive probability.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201910282936877ZK.pdf 296KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:3次