期刊论文详细信息
Electronic Communications in Probability
Projections of spherical Brownian motion
Aleksandar Mijatović1 
关键词: non-Lipschitz stochastic differential equation;    skew-product decomposition;    pathwise uniqueness;    Wright-Fisher diffusion;   
DOI  :  10.1214/18-ECP162
学科分类:统计和概率
来源: Institute of Mathematical Statistics
PDF
【 摘 要 】

We obtain a stochastic differential equation (SDE) satisfied by the first $n$ coordinates of a Brownian motion on the unit sphere in $\mathbb{R} ^{n+\ell }$. The SDE has non-Lipschitz coefficients but we are able to provide an analysis of existence and pathwise uniqueness and show that they always hold. The square of the radial component is a Wright-Fisher diffusion with mutation and it features in a skew-product decomposition of the projected spherical Brownian motion. A more general SDE on the unit ball in $\mathbb{R} ^{n+\ell }$ allows us to geometrically realize the Wright-Fisher diffusion with general non-negative parameters as the radial component of its solution.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201910282875180ZK.pdf 316KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:3次