期刊论文详细信息
Electronic Communications in Probability
About Doob’s inequality, entropy and Tchebichef
Emmanuel Rio1 
关键词: Doob’s inequality;    Hardy-Littlewood maximal function;    $L\log L$;    entropy;    binomial rate function;    covariance inequalities;    Cantelli’s inequality;    subGaussian random variables;    bounded differences inequality;    McDiarmid’s inequality;    conditional value at risk;   
DOI  :  10.1214/18-ECP178
学科分类:统计和概率
来源: Institute of Mathematical Statistics
PDF
【 摘 要 】

In this note we give upper bounds on the quantiles of the one-sided maximum of a nonnegative submartingale in the class $L\log L$ or the maximum of a submartingale in $L^p$. Our upper bounds involve the entropy in the case of nonnegative martingales in the class $L\log L$ and the $L^p$-norm in the case of submartingales in $L^p$. Starting from our results on entropy, we also improve the so-called bounded differences inequality. All the results are based on optimal bounds for the conditional value at risk of real-valued random variables.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201910282078487ZK.pdf 308KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:1次