| Proceedings | |
| Composite Single-Bolted Joint Simulation for Dynamic Strength Prediction | |
| Xue, Pu1  Chen, Yue2  Yu, Zeliang3  | |
| [1] Author to whom correspondence should be addressed.;Presented at the 18th International Conference on Experimental Mechanics (ICEM18), Brussels, Belgium, 1â5 July 2018.;School of Aeronautics, Northwestern Polytechnical University, Xiâan 710072, China | |
| 关键词: composite single-bolted joint; VUMAT; dynamic strength; | |
| DOI : 10.3390/ICEM18-05424 | |
| 学科分类:社会科学、人文和艺术(综合) | |
| 来源: mdpi | |
PDF
|
|
【 摘 要 】
Composite material has been widely used in various fields for its high specific strength and high specific stiffness, so the connectors applicable to composite structures capture many researchersâ attention. With the advantages of higher carrying capacity and repetitive assembling and disassembling, bolted joint becomes one of the most popular connectors in engineering practice. Cutting off the fiber and causing stress concentration are more serious to composite than metal, so it is necessary to predict the strength of the composite joints. Most investigations focus on the response under quasi-static loading, while dynamic effects should be in consideration in increasing impact conditions. The dynamic mechanical properties of composite joint may have a significant impact on the structural deformation and damage modes. For this purpose, this paper conducts dynamic composite single-bolted joint simulations in ABAQUS/Explicit, which used for predicting dynamic strength of the composite joint. T800/X850 laminates were tested to investigate their dynamic properties in our lab. Then the three-dimension progression damage model was established, while the dynamic constitutive model, damage initial criteria and damage evolution law of composite materials were coded in VUMAT of the finite element software ABAQUS/Explicit. The model was validated by quasi-static experiments of composite joint. The simulation results indicate that the yield strength and ultimate strength of the single-bolted composite joint are obviously increasing when consider the strain rate effect and dynamic loading. And the load-displacement curves show significant difference in damage stage. The main damages are sub-layer buckling and fiber breakage caused by extrusion.
【 授权许可】
CC BY
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO201910259983677ZK.pdf | 616KB |
PDF