期刊论文详细信息
Proceedings of the Indian Academy of Sciences. Mathematical sciences
Some infinite families of Ramsey $(P_{3}, P_{n})$-minimal trees
D RAHMADANI^11  E T BASKORO^12 
[1] Combinatorial Mathematics Research Group, Department of Mathematics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung (ITB), Bandung, Indonesia^1;Department of Applied Mathematics and Informatics, Technical University, Kosice, Slovak Republic^2
关键词: Ramsey minimal graph;    coloring;    Ramsey infinite;    tree;   
DOI  :  
学科分类:数学(综合)
来源: Indian Academy of Sciences
PDF
【 摘 要 】

For any given two graphs G and H, the notation $F \rightarrow (G, H)$ means that for any red–blue coloring of all the edges of $F$ will create either a red subgraph isomorphic to $G$ or a blue subgraph isomorphic to $H$. A graph $F$ is a Ramsey $(G, H)$-minimal graph if $F \rightarrow (G, H)$ but $F − e \nrightarrow (G, H)$, for every $e \in E(F)$. The class of all Ramsey $(G, H)$-minimal graphs is denoted by $\mathcal{R}(G, H)$. In this paper, we construct some infinite families of trees belonging to $\mathcal{R}(P_{3}, P_{n})$, for $n = 8$ and 9. In particular, we give an algorithm to obtain an infinite family of trees belonging to $\mathcal{R}(P_{3}, P_{n})$, for $n \geq 10$.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201910259730410ZK.pdf 460KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:2次