BMC Evolutionary Biology | |
Chromosome painting in three-toed sloths: a cytogenetic signature and ancestral karyotype for Xenarthra | |
Marta Svartman1  Nathlia F Azevedo2  Andrea Manchester3  | |
[1] Departamento de Biologia Geral, Instituto de Cincias Biolgicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil;Departamento de Gentica e Biologia Evolutiva, Instituto de Biocincias, Universidade de So Paulo, Rua do Mato 277, Cidade Universitria, So Paulo, Brazil;Department of Evolutionary Biology, University of Florence, Florence, Italy | |
关键词: Placental Mammal; Chromosome Painting; Diploid Number; Ancestral Karyotype; Chromosome Feature; | |
DOI : 10.1186/1471-2148-12-36 | |
学科分类:生物科学(综合) | |
来源: BioMed Central | |
【 摘 要 】
Xenarthra (sloths, armadillos and anteaters) represent one of four currently recognized Eutherian mammal supraorders. Some phylogenomic studies point to the possibility of Xenarthra being at the base of the Eutherian tree, together or not with the supraorder Afrotheria. We performed painting with human autosomes and X-chromosome specific probes on metaphases of two three-toed sloths: Bradypus torquatus and B. variegatus. These species represent the fourth of the five extant Xenarthra families to be studied with this approach. Eleven human chromosomes were conserved as one block in both B. torquatus and B. variegatus: (HSA 5, 6, 9, 11, 13, 14, 15, 17, 18, 20, 21 and the X chromosome). B. torquatus, three additional human chromosomes were conserved intact (HSA 1, 3 and 4). The remaining human chromosomes were represented by two or three segments on each sloth. Seven associations between human chromosomes were detected in the karyotypes of both B. torquatus and B. variegatus: HSA 3/21, 4/8, 7/10, 7/16, 12/22, 14/15 and 17/19. The ancestral Eutherian association 16/19 was not detected in the Bradypus species. Our results together with previous reports enabled us to propose a hypothetical ancestral Xenarthran karyotype with 48 chromosomes that would differ from the proposed ancestral Eutherian karyotype by the presence of the association HSA 7/10 and by the split of HSA 8 into three blocks, instead of the two found in the Eutherian ancestor. These same chromosome features point to the monophyly of Xenarthra, making this the second supraorder of placental mammals to have a chromosome signature supporting its monophyly.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201910259344504ZK.pdf | 1251KB | download |