期刊论文详细信息
Cellular Physiology and Biochemistry
Ganoderma Lucidum Polysaccharide Peptide Alleviates Hepatoteatosis via Modulating Bile Acid Metabolism Dependent on FXR-SHP/FGF
Dandan Zhong1 
关键词: Ganoderma lucidum polysaccharide peptide;    NAFLD;    Insulin resistance;    hepatosteatosis;    Metabolomics;    Bile acid synthesis;    Nuclear receptors;    Fatty acid synthesis;   
DOI  :  10.1159/000493297
学科分类:分子生物学,细胞生物学和基因
来源: S Karger AG
PDF
【 摘 要 】

Background/Aims Non-alcoholic fatty liver disease (NAFLD) encompasses a series of pathologic changes ranging from steatosis to steatohepatitis, which may progress to cirrhosis and hepatocellular carcinoma. The purpose of this study was to determine whether ganoderma lucidum polysaccharide peptide (GLPP) has therapeutic effect on NAFLD. Methods Ob/ ob mouse model and ApoC3 transgenic mouse model were used for exploring the effect of GLPP on NAFLD. Key metabolic pathways and enzymes were identified by metabolomics combining with KEGG and PIUmet analyses and key enzymes were detected by Western blot. Hepatosteatosis models of HepG2 cells and primary hepatocytes were used to further confirm the therapeutic effect of GLPP on NAFLD. Results GLPP administrated for a month alleviated hepatosteatosis, dyslipidemia, liver dysfunction and liver insulin resistance. Pathways of glycerophospholipid metabolism, fatty acid metabolism and primary bile acid biosynthesis were involved in the therapeutic effect of GLPP on NAFLD. Detection of key enzymes revealed that GLPP reversed low expression of CYP7A1, CYP8B1, FXR, SHP and high expression of FGFR4 in ob/ob mice and ApoC3 mice. Besides, GLPP inhibited fatty acid synthesis by reducing the expression of SREBP1c, FAS and ACC via a FXR-SHP dependent mechanism. Additionally, GLPP reduced the accumulation of lipid droplets and the content of TG in HepG2 cells and primary hepatocytes induced by oleic acid and palmitic acid. Conclusion GLPP significantly improves NAFLD via regulating bile acid synthesis dependent on FXR-SHP/FGF pathway, which finally inhibits fatty acid synthesis, indicating that GLPP might be developed as a therapeutic drug for NAFLD.

【 授权许可】

CC BY-NC-ND   

【 预 览 】
附件列表
Files Size Format View
RO201910259097365ZK.pdf 2914KB PDF download
  文献评价指标  
  下载次数:22次 浏览次数:12次