期刊论文详细信息
Proceedings | |
Sparse Semi-Functional Partial Linear Single-Index Regression | |
Vieu, Philippe1  Aneiros, Germán2  Novo, Silvia3  | |
[1] Author to whom correspondence should be addressed.;Institut de Mathématiques, Université Paul Sabatier, 31062 Toulouse, France;MODES Research Group, CITIC, Universidade da Coruña, 15071 A Coruña, Spain | |
关键词: functional data analysis; variable selection; sparse model; dimension reduction; functional single-index model; semiparametric model; | |
DOI : 10.3390/proceedings2181190 | |
学科分类:社会科学、人文和艺术(综合) | |
来源: mdpi | |
【 摘 要 】
The variable selection problem is studied in the sparse semi-functional partial linear model, with single-index type influence of the functional covariate in the response. The penalized least squares procedure is employed for this task. Some properties of the resultant estimators are derived: the existence (and rate of convergence) of a consistent estimator for the parameters in the linear part and an oracle property for the variable selection method. Finally, a real data application illustrates the good performance of our procedure.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201910255637584ZK.pdf | 720KB | download |