期刊论文详细信息
Cellular Physiology and Biochemistry
The Transient Receptor Potential Channel, Vanilloid 5, Induces Chondrocyte Apoptosis via Ca2+ CaMKII–Dependent MAPK and Akt/ mTOR Pathways in a Rat Osteoarthritis Model
Yingliang Wei1 
关键词: TRPV5;    Ca2+;    P-CaMKII;    Chondrocyte apoptosis;    Osteoarthritis;   
DOI  :  10.1159/000495874
学科分类:分子生物学,细胞生物学和基因
来源: S Karger AG
PDF
【 摘 要 】

Background/Aims Chondrocyte apoptosis is a central pathological feature of cartilage in osteoarthritis (OA). Accumulating evidence suggests that calcium ions (Ca2+) are an important regulator of apoptosis. Previously, we reported that the transient receptor potential channel vanilloid (TRPV5) is upregulated in monoiodoacetic acid (MIA)-induced OA articular cartilage. Methods The protein levels of TRPV5, phosphorylated Ca2+/calmodulin-dependent kinase II (p-CaMKII), and total CaMKII were detected in vivo using western blotting techniques. Primary chondrocytes were isolated and cultured in vitro. Then, p-CAMKII was immunolocalized by immunofluorescence in chondrocytes. Fluo-4AM staining was used to assess intracellular Ca2+. Annexin V-fluorescein isothiocyanate / propidium iodide flow cytometric analysis was performed to determine chondrocyte apoptosis. Western blotting techniques were used to measure the expression of apoptosis-related proteins. Results We found that ruthenium red (aTRPV5inhibitor)or(1-[N,O-bis-(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperaze (KN-62) (an inhibitor of Ca2+/calmodulin-dependent kinase II (CaMKII) phosphorylation) can relieve or even reverse OA in vivo. We found that TRPV5 has a specific role in mediating extracellular Ca2+ influx leading to chondrocyte apoptosis in vitro. The apoptotic effect in chondrocytes was inhibited by KN-62. We found that activated p-CaMKII could elicit the phosphorylation of extracellular signal-regulated protein kinase 1/2, c-Jun N-terminal kinase, and p38, three important regulators of the mitogen-activated protein kinase (MAPK) cascade. Moreover, we also showed that activated p-CaMKII could elicit the phosphorylation of protein kinase B (Akt) and two important downstream regulators of mammalian target of rapamycin (mTOR) 4E-binding protein, and S61 kinase. Conclusion Our results demonstrate that upregulated TRPV5 may be an important initiating factor that activates CaMKII phosphorylation via the mediation of Ca2+ influx. In turn, activated p-CaMKII plays a critical role in chondrocyte apoptosis via MAPK and Akt/mTOR pathways.

【 授权许可】

CC BY-NC-ND   

【 预 览 】
附件列表
Files Size Format View
RO201910255474001ZK.pdf 2797KB PDF download
  文献评价指标  
  下载次数:19次 浏览次数:7次