期刊论文详细信息
Revista de microbiologia
Phenol degradation and genotypic analysis of dioxygenase genes in bacteria isolated from sediments
Tian, Mengyang1 
[1] South-Central University for Nationalities, Wuhan, China
关键词: Isolation and identification;    Gram-negative bacteria;    Substrate utilization;    Dioxygenase genes;    Phenol biodegradation.;   
DOI  :  10.1016/j.bjm.2016.12.002
学科分类:农业科学(综合)
来源: Sociedade Brasileira de Microbiologia / Brazilian Society for Microbiology
PDF
【 摘 要 】

The aerobic degradation of aromatic compounds by bacteria is performed by dioxygenases. To show some characteristic patterns of the dioxygenase genotype and its degradation specificities, twenty-nine gram-negative bacterial cultures were obtained from sediment contaminated with phenolic compounds in Wuhan, China. The isolates were phylogenetically diverse and belonged to 10 genera. All 29 gram-negative bacteria were able to utilize phenol, m-dihydroxybenzene and 2-hydroxybenzoic acid as the sole carbon sources, and members of the three primary genera Pseudomonas, Acinetobacter and Alcaligenes were able to grow in the presence of multiple monoaromatic compounds. PCR and DNA sequence analysis were used to detect dioxygenase genes coding for catechol 1,2-dioxygenase, catechol 2,3-dioxygenase and protocatechuate 3,4-dioxygenase. The results showed that there are 4 genotypes; most strains are either PNP (catechol 1,2-dioxygenase gene is positive, catechol 2,3-dioxygenase gene is negative, protocatechuate 3,4-dioxygenase gene is positive) or PNN (catechol 1,2-dioxygenase gene is positive, catechol 2,3-dioxygenase gene is negative, protocatechuate 3,4-dioxygenase gene is negative). The strains with two dioxygenase genes can usually grow on many more aromatic compounds than strains with one dioxygenase gene. Degradation experiments using a mixed culture representing four bacterial genotypes resulted in the rapid degradation of phenol. Determinations of substrate utilization and phenol degradation revealed their affiliations through dioxygenase genotype data.

【 授权许可】

CC BY-NC   

【 预 览 】
附件列表
Files Size Format View
RO201910253074576ZK.pdf 974KB PDF download
  文献评价指标  
  下载次数:17次 浏览次数:21次