期刊论文详细信息
| Proceedings of the Indian Academy of Sciences. Mathematical sciences | |
| Augmentation quotients for Burnside rings of some finite $p$-groups | |
| SHAN CHANG^11  | |
| [1] School of Mathematics, Hefei University of Technology, Hefei 230009, China^1 | |
| 关键词: Finite $p$-group; Burnside ring; augmentation ideal; augmentation quotient; | |
| DOI : | |
| 学科分类:数学(综合) | |
| 来源: Indian Academy of Sciences | |
PDF
|
|
【 摘 要 】
Let $G$ be a finite group, $\Omega(G)$ be its Burnside ring and $\Delta(G)$ the augmentation ideal of $\Omega(G)$. Denote by $\Delta^{n}(G)$ and $\mathcal{Q}_{n}(G)$ the $n$-th power of $\Delta(G)$ and the $n$-th consecutive quotient group $\Delta^{n}(G)/\Delta^{n+1}(G)$, respectively. This paper provides an explicit $\mathbb{Z}$-basis for $\Delta^{n}(\mathcal{H})$ and determine the isomorphism class of $\mathcal{Q}_{n}(\mathcal{H})$ for each positive integer $n$, where $\mathcal{H} = \langle g, h| g^{p^{m}} = h^{p} = 1, h^{â1}gh = g^{p^{mâ1}+1}\rangle$, $p$ is an odd prime
【 授权许可】
CC BY
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO201910252349085ZK.pdf | 414KB |
PDF