期刊论文详细信息
Proceedings of the Indian Academy of Sciences. Mathematical sciences
Homotopy type of neighborhood complexes of Kneser graphs, $K G_{2,k}$
NANDINI NILAKANTAN^11 
[1] Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Kanpur 208 016, India^1
关键词: Hom complexes;    Kneser graphs;    discrete Morse theory;   
DOI  :  
学科分类:数学(综合)
来源: Indian Academy of Sciences
PDF
【 摘 要 】

Schrijver (Nieuw Archief voor Wiskunde, 26(3) (1978) 454–461) identified a family of vertex critical subgraphs of the Kneser graphs called the stable Kneser graphs $SG_{n,k}$ . Björner and de Longueville (Combinatorica 23(1) (2003) 23–34) proved that the neighborhood complex of the stable Kneser graph $SG_{n,k}$ is homotopy equivalent to a$k$-sphere. In this article, we prove that the homotopy type of the neighborhood complex of the Kneser graph $K G_{2,k}$ is a wedge of $(k + 4)(k + 1) + 1$ spheres of dimension $k$. We construct a maximal subgraph $S_{2,k}$ of $K G_{2,k}$ , whose neighborhood complex is homotopy equivalent to the neighborhood complex of $SG_{2,k}$ . Further, we prove that the neighborhood complex of $S_{2,k}$ deformation retracts onto the neighborhood complex of $SG_{2,k}$ .

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201910251306299ZK.pdf 410KB PDF download
  文献评价指标  
  下载次数:22次 浏览次数:8次