期刊论文详细信息
Czechoslovak Mathematical Journal
4-cycle properties for characterizing rectagraphs and hypercubes
Khadra Bouanane, Abdelhafid Berrachedi1 
关键词: hypercube;    $(0;    2)$-graph;    rectagraph;    4-cycle;    characterization;   
DOI  :  10.21136/CMJ.2017.0227-15
学科分类:数学(综合)
来源: Akademie Ved Ceske Republiky
PDF
【 摘 要 】

  A $(0,2)$-graph is a connected graph, where each pair of vertices has either 0 or 2 common neighbours. These graphs constitute a subclass of $(0,\lambda)$-graphs introduced by Mulder in 1979. A rectagraph, well known in diagram geometry, is a triangle-free $(0,2)$-graph. $(0,2)$-graphs include hypercubes, folded cube graphs and some particular graphs such as icosahedral graph, Shrikhande graph, Klein graph, Gewirtz graph, etc. In this paper, we give some local properties of 4-cycles in $(0,\lambda)$-graphs and more specifically in $(0,2)$-graphs, leading to new characterizations of rectagraphs and hypercubes.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201910189934491ZK.pdf 121KB PDF download
  文献评价指标  
  下载次数:12次 浏览次数:1次