| Czechoslovak Mathematical Journal | |
| Maximal regularity of the spatially periodic Stokes operator and application to nematic liquid crystal flows | |
| Jonas 1  | |
| [1] Fachbereich Mathematik, Technische Universitt Darmstadt, Schlogartenstrae 7, 64283 Darmstadt, Germany | |
| 关键词: Stokes operator; spatially periodic problem; maximal $L^p$ regularity; nematic liquid crystal flow; quasilinear parabolic equations; | |
| DOI : | |
| 学科分类:数学(综合) | |
| 来源: Akademie Ved Ceske Republiky | |
PDF
|
|
【 摘 要 】
We consider the dynamics of spatially periodic nematic liquid crystal flows in the whole space and prove existence and uniqueness of local-in-time strong solutions using maximal $L^p$-regularity of the periodic Laplace and Stokes operators and a local-in-time existence theorem for quasilinear parabolic equations à la Clément-Li (1993). Maximal regularity of the Laplace and the Stokes operator is obtained using an extrapolation theorem on the locally compact abelian group $G:=\mathbb R^{n-1}\times\mathbb R / L \mathbb Z$ to obtain an $\mathcal{R}$-bound for the resolvent estimate. Then, Weis' theorem connecting $\mathcal{R}$-boundedness of the resolvent with maximal $L^p$ regularity of a sectorial operator applies.
【 授权许可】
Unknown
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO201910189697372ZK.pdf | 192KB |
PDF