期刊论文详细信息
Czechoslovak Mathematical Journal
Musielak-Orlicz-Sobolev spaces with zero boundary values on metric measure spaces
Tetsu Shimomura1  Takao Ohno2 
[1] Department of Mathematics, Graduate School of Education, Hiroshima University, 1-1-1, Kagamiyama, Higashi-Hiroshima 739-8524, Hiroshima, Japan;Faculty of Education and Welfare Science, Oita University, 700 Dannoharu, Oita-city, 870-1192, Oita, Japan
关键词: Sobolev space;    metric measure space;    Hajł;    asz-Sobolev space;    Musielak-Orlicz space;    capacity;    variable exponent;    zero boundary values;   
DOI  :  
学科分类:数学(综合)
来源: Akademie Ved Ceske Republiky
PDF
【 摘 要 】

We define and study Musielak-Orlicz-Sobolev spaces with zero boundary values on any metric space endowed with a Borel regular measure. We extend many classical results, including completeness, lattice properties and removable sets, to Musielak-Orlicz-Sobolev spaces on metric measure spaces. We give sufficient conditions which guarantee that a Sobolev function can be approximated by Lipschitz continuous functions vanishing outside an open set. These conditions are based on Hardy type inequalities.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201910189502527ZK.pdf 236KB PDF download
  文献评价指标  
  下载次数:12次 浏览次数:7次