期刊论文详细信息
| Czechoslovak Mathematical Journal | |
| Musielak-Orlicz-Sobolev spaces with zero boundary values on metric measure spaces | |
| Tetsu Shimomura1  Takao Ohno2  | |
| [1] Department of Mathematics, Graduate School of Education, Hiroshima University, 1-1-1, Kagamiyama, Higashi-Hiroshima 739-8524, Hiroshima, Japan;Faculty of Education and Welfare Science, Oita University, 700 Dannoharu, Oita-city, 870-1192, Oita, Japan | |
| 关键词: Sobolev space; metric measure space; Hajł; asz-Sobolev space; Musielak-Orlicz space; capacity; variable exponent; zero boundary values; | |
| DOI : | |
| 学科分类:数学(综合) | |
| 来源: Akademie Ved Ceske Republiky | |
PDF
|
|
【 摘 要 】
We define and study Musielak-Orlicz-Sobolev spaces with zero boundary values on any metric space endowed with a Borel regular measure. We extend many classical results, including completeness, lattice properties and removable sets, to Musielak-Orlicz-Sobolev spaces on metric measure spaces. We give sufficient conditions which guarantee that a Sobolev function can be approximated by Lipschitz continuous functions vanishing outside an open set. These conditions are based on Hardy type inequalities.
【 授权许可】
Unknown
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO201910189502527ZK.pdf | 236KB |
PDF