期刊论文详细信息
Czechoslovak Mathematical Journal
The Bergman kernel: Explicit formulas, deflation, Lu Qi-Keng problem and Jacobi polynomials
Tomasz Beberok1 
关键词: Lu Qi-Keng problem;    Bergman kernel;    Routh-Hurwitz theorem;    Jacobi polynomial;   
DOI  :  10.21136/CMJ.2017.0073-16
学科分类:数学(综合)
来源: Akademie Ved Ceske Republiky
PDF
【 摘 要 】

  We investigate the Bergman kernel function for the intersection of two complex ellipsoids $\{(z,w_1,w_2) \in\mathbb{C}^{n+2} \colon|z_1|^2 + \cdots+ |z_n|^2 + |w_1|^q < 1,|z_1|^2 + \cdots+ |z_n|^2 + |w_2|^r < 1\}. $ We also compute the kernel function for $\{(z_1,w_1,w_2) \in\mathbb{C}^3 \colon|z_1|^{2/n} + |w_1|^q < 1,|z_1|^{2/n} + |w_2|^r < 1\}$ and show deflation type identity between these two domains. Moreover in the case that $q=r=2$ we express the Bergman kernel in terms of the Jacobi polynomials. The explicit formulas of the Bergman kernel function for these domains enables us to investigate whether the Bergman kernel has zeros or not. This kind of problem is called a Lu Qi-Keng problem.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201910189240893ZK.pdf 155KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:2次