期刊论文详细信息
Czechoslovak Mathematical Journal
Classification of rings with toroidal Jacobson graph
Krishnan Selvakumar1 
[1] Manoharan Subajini, Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, 627012, India
关键词: planar graph;    genus of a graph;    local ring;    nilpotent element;    Jacobson graph;   
DOI  :  
学科分类:数学(综合)
来源: Akademie Ved Ceske Republiky
PDF
【 摘 要 】

Let $R$ be a commutative ring with nonzero identity and $J(R)$ the Jacobson radical of $R$. The Jacobson graph of $R$, denoted by $\mathfrak J_R$, is defined as the graph with vertex set $R\setminus J(R)$ such that two distinct vertices $x$ and $y$ are adjacent if and only if $1-xy$ is not a unit of $R$. The genus of a simple graph $G$ is the smallest nonnegative integer $n$ such that $G$ can be embedded into an orientable surface $S_n$. In this paper, we investigate the genus number of the compact Riemann surface in which $\mathfrak J_R$ can be embedded and explicitly determine all finite commutative rings $R$ (up to isomorphism) such that $\mathfrak J_R$ is toroidal.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201910189053784ZK.pdf 144KB PDF download
  文献评价指标  
  下载次数:9次 浏览次数:2次