期刊论文详细信息
Czechoslovak Mathematical Journal | |
Porous medium equation and fast diffusion equation as gradient systems | |
Samuel Littig1  | |
[1] Jrgen Voigt, TU Dresden, Fachrichtung Mathematik, Helmholtzstrasse10, D-01062 Dresden, Germany | |
关键词: porous medium equation; gradient system; fast diffusion; asymptotic behaviour; order preservation; | |
DOI : | |
学科分类:数学(综合) | |
来源: Akademie Ved Ceske Republiky | |
【 摘 要 】
We show that the Porous Medium Equation and the Fast Diffusion Equation, $\dot u-\Delta u^m=f$, with $m\in(0,\infty)$, can be modeled as a gradient system in the Hilbert space $H^{-1}(\Omega)$, and we obtain existence and uniqueness of solutions in this framework. We deal with bounded and certain unbounded open sets $\Omega\subseteq\mathbb R^n$ and do not require any boundary regularity. Moreover, the approach is used to discuss the asymptotic behaviour and order preservation of solutions.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201910188201107ZK.pdf | 217KB | download |