Czechoslovak Mathematical Journal | |
A new algorithm for approximating the least concave majorant | |
Martin Franců, Ron Kerman, Gord Sinnamon1  | |
关键词: least concave majorant; level function; spline approximation; | |
DOI : 10.21136/CMJ.2017.0408-16 | |
学科分类:数学(综合) | |
来源: Akademie Ved Ceske Republiky | |
【 摘 要 】
The least concave majorant, $\hat F$, of a continuous function $F$ on a closed interval, $I$, is defined by$ \hat F (x) = \inf\{ G(x)G \geq F, G \text{ concave}\},\quad x \in I.$ We present an algorithm, in the spirit of the Jarvis March, to approximate the least concave majorant of a differentiable piecewise polynomial function of degree at most three on $I$. Given any function $F \in\mathcal{C}^4(I)$, it can be well-approximated on $I$ by a clamped cubic spline $S$. We show that $\hat S$ is then a good approximation to $\hat F$.We give two examples, one to illustrate, the other to apply our algorithm.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201910187580160ZK.pdf | 239KB | download |