期刊论文详细信息
Czechoslovak Mathematical Journal | |
Lagrange approximation in Banach spaces | |
Lisa 1  Nilsson2  | |
[1] If P&C Insurance, Barks vg 15, SE-10680 Stockholm, Sweden;Ignacio Zalduendo, Universidad T. Di Tella, Av. Figueroa Alcorta 7350 (C1428BCW), Buenos Aires, Argentina | |
关键词: Lagrange interpolation; Lagrange approximation; Kergin interpolation; Kergin approximation; Banach space; | |
DOI : | |
学科分类:数学(综合) | |
来源: Akademie Ved Ceske Republiky | |
【 摘 要 】
Starting from Lagrange interpolation of the exponential function $ e^z$ in the complex plane, and using an integral representation formula for holomorphic functions on Banach spaces, we obtain Lagrange interpolating polynomials for representable functions defined on a Banach space $E$. Given such a representable entire funtion $fE \to\mathbb C$, in order to study the approximation problem and the uniform convergence of these polynomials to $f$ on bounded sets of $E$, we present a sufficient growth condition on the interpolating sequence.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201910186202999ZK.pdf | 119KB | download |